上一篇
NobodyWho是什么?一文让你看懂NobodyWho的技术原理、主要功能、应用场景PIKE-RAG是什么?一文让你看懂PIKE-RAG的技术原理、主要功能、应用场景
PIKE-RAG概述简介
PIKE-RAG(sPecIalized KnowledgE and Rationale Augmented Generation)是微软亚洲研究院推出的检索增强型生成框架,能解决传统RAG系统在复杂工业应用中的局限性。PIKE-RAG基于提取、理解和应用专业知识,构建连贯的推理逻辑,引导大型语言大模型(LLM)生成准确的回答。PIKE-RAG引入知识原子化(Knowledge Atomizing),将知识分解为细粒度的原子单元,用问题形式存储,便于高效检索和组织。PIKE-RAG提出多智能体规划模块,用在处理创造性问题,从多个角度进行推理和规划。
PIKE-RAG的功能特色
专业知识提取与理解:从多样化的数据源中提取领域特定的知识,转化为结构化的知识单元,为复杂问题提供精准的知识支持。
推理逻辑构建:基于动态任务分解和知识感知的推理路径规划,逐步构建连贯的推理逻辑,引导语言大模型生成准确的答案。
多跳问题处理:基于知识原子化和任务分解,将复杂问题分解为多个原子问题,逐步解决多跳推理任务。
创造性问题解决:引入多智能体系统,从多个角度进行推理和规划,激发创新性解决方案。
分阶段系统开发:根据任务复杂性,支持从基础的事实性问题到高级的创造性问题的分阶段开发,逐步提升系统能力。
PIKE-RAG的技术原理
知识原子化:将文档中的知识分解为细粒度的“原子知识”,用问题形式存储。原子知识作为检索的索引,更高效地匹配用户问题,提高知识检索的精度。
知识感知任务分解:动态分解复杂问题为多个原子问题,根据知识库的内容选择最优的推理路径。基于迭代检索和选择,逐步收集相关信息并构建完整的推理逻辑。
多智能体规划:在处理创造性问题时,引入多个智能体,每个智能体从不同角度进行推理和规划。基于多智能体的协同工作,生成更全面、更具创新性的解决方案。
多粒度检索:在多层异构知识图谱中进行多粒度检索,从整体文档到细粒度的知识单元,逐步细化检索范围。结合多层知识图谱的结构,提升知识检索的效率和准确性。
分阶段系统开发:根据任务复杂性,将RAG系统分为不同等级(L1-L4),逐步提升系统能力。每个等级针对特定类型的问题,从简单的事实性问题到复杂的创造性问题,逐步增强系统的推理和生成能力。
PIKE-RAG项目介绍
GitHub仓库:https://github.com/microsoft/PIKE-RAG
arXiv技术论文:https://arxiv.org/pdf/2501.11551
PIKE-RAG能做什么?
法律领域:辅助法律专业人士解读法规、分析案例,提供精准的法律咨询和建议。
医疗领域:帮助医生进行疾病诊断和治疗方案规划,提供基于专业知识的医疗建议。
半导体设计:支持工程师理解复杂物理原理,优化半导体设计和研发流程。
金融领域:用在风险评估和市场预测,为投资决策提供数据支持和分析报告。
工业制造:优化生产流程和供应链管理,提升工业效率和质量控制。
-
CHANGER是什么?一文让你看懂CHANGER的技术原理、主要功能、应用场景2025-04-05
-
Kiroku是什么?一文让你看懂Kiroku的技术原理、主要功能、应用场景2025-04-05
-
Vision Search Assistant是什么?一文让你看懂Vision Search Assistant的技术原理、主要功能、应用场景2025-04-05
-
MVDrag3D是什么?一文让你看懂MVDrag3D的技术原理、主要功能、应用场景2025-04-05
-
Chonkie是什么?一文让你看懂Chonkie的技术原理、主要功能、应用场景2025-04-05
-
MSQA是什么?一文让你看懂MSQA的技术原理、主要功能、应用场景2025-04-05

AI爱好者的一站式人工智能AI工具箱,累计收录全球10,000⁺好用的AI工具软件和网站,方便您更便捷的探索前沿的AI技术。本站持续更新好的AI应用,力争做全球排名前三的AI网址导航网站,欢迎您成为我们的一员。







